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A factored ADI finite-difference scheme has been developed for solution of the two dimen-
sional incompressible Navier-Stokes equations by the artificial compressibility method. The
scheme employs primitive variables with central differencing on a staggered grid. The resulting
close coupling between pressure and velocity produces enhanced stability and eliminates the
need for artificial damping. A spatially variable time step based on a fixed Courant number is
used to improve computational efficiency. Numerical results have been obtained for flows in a
straight channel, a curved rotating channel, and a driven cavity. In the latter case at Reynolds
number of 10,000 with local cell Reynolds numbers as high as 100, a solution on a 40 x 40
stretched grid shows no spatial oscillations in the flow variables. © 1987 Academic Press, Inc.

1. INTRODUCTION

The purpose of this study is to obtain solutions of steady, incompressible, inter-
nal fluid flow using a time-marching calculation of the Navier-Stokes equations.
Unlike the compressible flow case, the continuity equation for incompressible flow
has no explicit time derivative terms; the constraint “V-u=0" must be satisfied at
any time 7, which makes solving the incompressible momentum equations for either
viscous or inviscid flow difficult if a standard time-marching solution method is
used.

Taking a curl of the momentum equations gives the vorticity transport equations
with the pressure eliminated. This formulation requires the use of the vorticity
boundary conditions, which are difficult to implement, especially in three dimen-
sions. Furthermore, the pressure is not obtained directly so that additional
calculation is needed. Because of these difficulties, it is advantageous and more
straightforward to use the primitive variables, say velocity u and pressure p, as the
dependent variables. The primitive variable formulation is also more accurate on
the boundaries.

Harlow and Welch [1] have developed a method of solving the two dimensional
unsteady Navier-Stokes equations by employing the Poisson equation for the
pressure in such a way that the continuity equation is satisfied at each time step.
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Williams [27] followed a similar procedure in the calculation of a three dimensional
natural convection problem with the Fast Fourier Transform technique as a
Poisson equation solver for the pressure. Chorin [3] proposed another method
which avoids solving the Poisson equation directly by introducing an intermediate
step in which the flow velocities are first obtained by solving the momentum
equations with the pressure gradients omitted. Then in order to obtain a divergence
free velocity field, the velocities are corrected successively by the pressure gradients
in the following time step until the continuity equation is satisfied. A variation of
the method of reference [37] known as the velocity-pressure method has been widely
used [4-67 with many different finite-difference schemes.

If the goal is to obtain the steady solution only, any of these methods are com-
putationally wasteful. Chorin [7] and Temam [8] introduced an effective way to
overcome the difficulty inherent in the constraint, “V-u=20," by adding a time
derivative of the pressure to the continuity equation. This term is multiplied by an
“artificial compressibility” coefficient. The method has been applied to {luid flow
and heat transfer problems in both two and three space dimensions [9-11], and the
numerical analysis also has been done extensively [12-147. An excellent survey of
this work has been made by Peyret and Taylor [15].

The present study presents a central-difference numerical scheme coupled with
the velocity and pressure without adding artificial damping terms. In Section 2 we
discuss a numerical scheme based on the artificial compressibility method along
with the boundary conditions and the choice of the artificial compressibility coef-
ficient and the time step. Section 3 provides numerical results on an IBM 370/3033
for channel flows and a driven cavity flow at very large Reynolds number, in which
there are no oscillations in the flow variables obtained by the central-
difference numerical scheme.

2. FORMULATION OF THE PROBLEM

2.1. Mathematical Formulation

The Navier-Stokes equations with artificial compressibility can be written in
dimensioniess form as

~

ou 1 o, N

E+V (un) = ~Vp+—-ReV u (2.1)
ap

0—+V u= 2.2
az+ u=0 (2.2}

where ¢ and Re are the artificial compressibility coefficient and the Reynolds num-
ber, respectively. The divergence free constraint on the velocity has been replaced
by a time evolution equation for the pressure, which implies (2.1) and (2.2) can be
solved by existing numerical methods for real compressible flow problems. The
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major advantage of using the system (2.1) and (2.2) is that no iteration is needed to
satisfy “V-u=0" at each time step. System (2.1) and (2.2) has no physical meaning
until steady state is reached.

Introducing the artificial compressibility term, J§dp/01, into the continuity
equation, in the inviscid limit, results in a system of hyperbolic partial differential
equations that gives rise to an artificial wave speed. As an example, let us consider
the inviscid one dimensional version of (2.1) and (2.2) as follows:

ol ofasls]=0 =

The eigenvalues of the square matrix of (2.3) are u+ (> + 1/8)"%, which are real
and distinct, therefore (2.3) is hyperbolic. Furthermore, the eigenvalues are opposite
in sign; in other words, the flow field described by using artificial compressibility is
subsonic for any positive values of J. This guarantees that there will be no discon-
tinuity, such as a shock in the solution, therefore, 6 may be chosen to produce the
fastest convergence to the steady state.

2.2. Numerical Formulation

In discussing finite-difference formulations of the system (2.1) and (2.2) we will
restrict ourselves to a two dimensional analysis in a Cartesian coordinate system,
which can be readily extended to three dimensional flows. The factored implicit
method of Douglas and Gunn [16] has been employed for compressible flows by
Beam and Warming [17] and Briley and McDonald [18]. The present finite-dif-
ference scheme uses a similar technique for incompressible flows using a staggered
grid system. In this grid system scalar quantities (e.g., pressure in this analysis} are
located at the centers of their cells and the velocity components in the x- and
y-directions, u and v, are stored at different positions on the boundaries of the
pressure cell, as is shown in Fig. 1.

Equations (2.1) and (2.2) can be written as

0
a—?+(AX+Ay)¢=o (24)
where
- a7 - !
u M 0 — N 0 0
ox
0 M O A=]0 N g
(I): v, AX—- 3 y = ay
1o 0
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FiG6. 1. Staggered grid system and boundary conditions. u, u-velocity; v, s-velocity; @, pressure;
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where
0 1 8%y 8 1 0%y
My=r—W)—5-72=, Ny=5(0f)— 5=,
v Ox Re dx? dy Re dy*’

here Y = u or v. Introducing an intermediate step, denoted by *, and approximating
the convective terms with the values at the present time #n A¢, we can advance (2.4}
in time as follows:

O* — "+ AH(ALY" + AT$*) =0

| (25)
"= @7+ AHALGT T+ ALG¥) =0,

We may consider the first and second expressions of (2.5) as a prediction and a

correction step, respectively. The convection terms in N are discretized in the inter-
mediate step, denoted by *, as

fi(vu):(vf)"(u,»j—i— Uy )H2 = (07 Yy + uy )42
dy Ay
—O:— (vv) = (D:—)n(vif'+uij+l)*/2-(U;)n(vij+ui’.71)*/2
oy Ay

where v =(v; 40, ;)2 o7 =, +v,, 1)/2 v =(vy;+0,,,)/2, and
v, = (v;+v;_,)/2, which represent the v-velocities on the upper and lower boun-
daries of the u- and wv-cells, respectively. For the correction step, denoted by
superscript 7 + 1, the convective terms in M are discretized as
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0 _ ()} Vv +o,, lj)’hL 1/2 —(u, )n(v{j +u,_ 1j)n+ 2
== () =

0x Ax

d ] Yyt g Y2 —(u; Yiug+u, )" 2
== (uu) =

Ox Ax

where  wf =(u;+u;,1)/2, w =u,_ytu_y;, )2, wf=(u;+u,, )2 and
u, = (u;+u;_;)/2, which are the u-velocities on the right and left side boundaries
of the v- and wu-cells, respectively.

Obviously, the converged solution of (2.5) is a steady-state solution of (2.4).
System (2.5) can be rewritten in a simpler “delta form™ as

(I+ 41 A) Ap* = —AH(AL+ A) ¢” (2.6)
(I+4: A7) Ap" ! = Ad* 2.7

where 4¢* = p* — ", 40" "' =¢" ! —¢”, and I is the identity matrix. Finally, (2.6)
and (2.7) can be combined to yield

(T+ A(A” + A7) + 472 APA7) A"+ = — AH(AT +AL) §". (2.8)

Let us call the calculation procedure of (2.6) the y-sweep, and (2.7) the x-sweep,
and express them in central spatial difference form. Then in the staggered grid
system:

For the y-sweep:

t

! i1
<— Eyvu‘ ——t;) Au,}'f_,+<1 +Ey(v;‘ —v;)+2t'y) Au,}’-‘+(§’v v}l — t;) Auf, = (Ru);
(2.9)
i o t *
— 2o, -1, 0 Av I+3y(v;’——v;)+2t;, -1, |4v
+
L ol {4p L 1] |4
5 ot 5 F
L 4 ’ ¥ :
3 v —it, 1, Av Ry i=1,2,..1
N - , (2.10)
0 ¢ Ap Rp j=12..,J
i+1 v

where ,=At/dy, t,=A4dt/(Re 4y?). (Ru); and (Rv), are the central-difference
expressions of the x, y components of A#(Re ™! V2u—Vp—V- (un))” at the u- and
v-cells, respectively, and (Rp), is the two-point central-difference formulation of
—At(V-u)"/d at the p-cell. As shown above, in the y-sweep du* is decoupled from
the pressure and treated as a scalar, whereas 4v* and 4p* are coupled to yield a
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2 x 2 block tridiagonal matrix. Also, note from (2.10) that dp/dy for the. p-momen-
tum and dv/dy for the continuity equation are approximated by two-point central-
difference relations.

For the x-sweep:

1 t , N, "
§<f§uv‘ —t})dv;’jf]—%—(l +-21(uj—u;")+2t;>4lv’;-“+ <—2— ul — zx)dv,:szzivijf
210
I n+1 t n+1
~~§‘-uu”—l"\, 0 ||A4u 1+—2’—C(uj-—u,j}+2t; —i. | | du
I + 7
- = 6 {|4p = 1 Ap
0 i—1j 5 i
¢ n+1 k
—Zﬁu; — 1t i ) | Au Au
+ = (212}
0 0 Ap Ap
i+ 17 i

where 1, = At/Ax, t, = At/(Re 4x?). In the x-sweep, 40"+ becomes decoupled from
the pressure while Au" ' and Ap” ' form a 2 x 2 block matrix. Also dp/dx in the
u-momentum and Ju/0x in the continuity equation again have two-point central-
difference approximations.

The velocity and pressure coupling in the x- and y-sweeps is illustrated in Fig. .
The details in the finite-difference expressions of (Ru);, (Rv);, (Rp), and others are
shown in the Appendix.

2.3. Boundary Conditions

In the staggered grid arrangements the pressure boundary condition is not
required on the physical boundary, which is a solid wall in this work. In internal
flow problems, such as a channel flow, no-slip conditions are imposed on the solid
boundaries. For the inlet and exit let us examine the behavior of the characteristics
of the inviscid equations of motion as

5 u 2u 0 1 u v ou 0} _lu
o+l o wolZlolslo 20 11 Z ol=0 (13
ot Ox cy

p /6 0 0 p 0 176 0O

Since the characteristics of the first square matrix are u, u + (u” + 1/6)"?, two right
running waves at the inlet and one left running wave at the exit propagate into the
computational domain. Therefore, two boundary conditions are imposed at the
inlet, and only one at the exit. In this work we specify the velocities, u and v, at the
inlet and the pressure at the exit, as shown in Fig. 1.
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2.4. Choice of Artificial Compressibility and Time Step

To have some idea how to choose the artificial compressibility coefficient, 5, we
take the linear combination of the first and second square matrices of (2.13), which
are denoted by C, and C,, as

D=0,C,+0,C, (2.14)

where o, and o, are numbers chosen to be cos § and sin 8; here 8 is any value of
angle. The matrix D can be diagonalized to yield the eigenvalues, A’s as

A=c, e[+ (a2 +a2)6]" ai+ai=1 (2.15)

where ¢ = u+a,v. If a local impulsive plane perturbation front is introduced to
the solution of (2.13), plane waves propagate with velocities of A’s in a direction
perpendicular to the perturbation front; then 6 is the angle between the x-axis and
this direction (see p. 6, Ref. [19]). We choose J in such a way that the magnitudes
of the eigenvalues are of the same order as

c~c+(A+1/3)  and  c~le—(*+1/8)).

From the second expression above we have § ~ 1/3¢” In this case the ratio of the
largest eigenvalue to the smallest one is only about 3. In the present work we take 6
as

5=§7]‘i (2.16)

where ¢, which is #*+ v?, is some representative flow speed. For the optimum value
of § a physical understanding or qualitative estimation of the flow field under con-
sideration and numerical experiments are needed.

For the choice of an appropriate time step, 4z, let us consider the linearized
inviscid equations in a non-conservative form as

%+(uO-V)u=~—Vp, 5%’%+V1=0 (2.17)
where u, is the local velocity with (u,, v,) in the x and y directions, respectively,
and it is assumed constant. After discretizing (2.17) in the central-difference form
for the staggered grid we replace (u,v,p) by their Fourier components
(U, V, P)exp(ik - x), where i=./—1, k is the wave number with components
(k. k,) and x is the position vector. Then we have from the present scheme
described in (2.8)

U n+1 U n
[V} =G [V} ., G=(+41A,+A,)+42A,A)"'(I+47AA,)

P P
(2.18)
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where
v, sin B ] ' iug sin & 0 e —1 |
Ay 0 0 Ax Ax
i 0 ivgsin f e —1 A= 0 osina
& Ay Ay Ax
- — i oy
=% 1—¢ 0 0
i oAy i | d4x |

and a =k, dx, f=k, Ay. For the purpose of estimating the time step we assume
that the A7* term in (2.18) is much smaller than the Ar term so that the
amplification matrix can be approximated as

G=[1+41A,+A )] "
Then, the eigenvalues of G for the inviscid equations become

1 1

T1viQ At _ Q [Q* 2/1l—cosa 1—cosf ]1/2
4ididEe | 512
i t{z—[fra( i T

AG)

where Q = u, sin a/Ax + v, sin f/4y. For a minimum |4|, it may be a proper choice
if we take the following value of the Courant number, Cr, defined as

2/ 1 1 172 I Mugl gl
) = | 7
Cr=Adt {CO+[C0+5< 5+ yzﬂ }, where C, 2( . + y) {2.19)

to be as large as possible. This suggests that a spatially variable time step be used
for a fixed Cr.

3. EXaMPLES OF CALCULATIONS

As example problems, fluid flow through a straight channel, a rotating passage,
and a driven-cavity flow are presented. Two examples of the through-flow have
many practical applications. Computationally, they are good examples of the
application of in- and out-flow boundary conditions. The flow in the rotating
passage cxample is of interest in the present two-dimensional study since the flow
variables are the functions of two independent space variables even though there
are three velocity components. Finally, the driven-cavity flow example is typical of
a problem with no preferred flow direction. Furthermore, this example is a model
problem of a recirculating flow in a confined region. The boundary condition for
this problem is well defined, and is the only specified velocity on the wall.
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3.1. Fluid Flow in a Straight Channel

Because of the symmetry of the flow, calculations have been performed in half of
the flow domain, between the lower wall, y =0, and the center line, y=H/2, where
H is the channel width. The Reynolds number is defined as Re = UH/v, where U is
the uniform inlet velocity and v the kinematic viscosity. At the inlet # and v are set
to unity and zero, respectively, and the pressure is allowed to vary. On the wall
u=v=0, and along the center line du/dy =v=0. At the exit u and v are linearly
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FiG. 3. The wu-velocity along a center line of the channel at Re = 150. C, numerical solution [237;

®, numerical solution interpolated from Re = 50, 100, and 200 [207; —-—, 1-term downstream expansion
[227]; ———, 2-term upstream expansion [217]; ——, present result.

extrapolated in order to calculate their momentum equations at the very end cells
in the x-direction and p is given for the calculation of the u-momentum equation as

¥ 2
(r-pae=[ (Re o= 0m) dy— (T 407 G
where subscripts w and e denote the wall and exit, respectively. 1t is necessary to fix
the pressure level, therefore, (p,, ). i1s set to zero.

Figure 2a shows the convergence histories of the rms (root-mean-square) of V- a
for various values of Cr. It is noted that fast convergence is obtained at about
Cr=20 for a fixed 4, 0.4 in this case. A uniform grid with 4y/4x=0.5 and Cr=20
have been used throughout the computations of this example. The rate of con-
vergence is plotted in Fig. 2b for different values of ¢ at Cr=20. Taking a represen-
tative flow speed to be 1.5 (fully developed maximum velocity) and 0.75 (half of the
maximum speed), by (2.16) we may guess the optimum range of 6 to be
0.148 ~ (.592. Fast convergence is obtained when ¢ is taken to be about 0.4; slower
convergences arc observed if § deviates from 0.4.

It 1s assumed that the steady state is reached if the maximum value of divergence
of the velocity, max(V -u), is less than 5x 10~°. To obtain the steady solution for
Re = 150, 105 time steps (18 seconds of CPU time) are needed using a 60 x 10 grid.
The difference in the flow rates between the inlet and outlet is 0.006% of the inlet
flow rate and the rms of V- u converges down to 1.4 x 10 5. As shown in Fig. 3, the
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Fic. 4. Deve]opment of u-velocity along x for Re = 1000.
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present values of u along the center line agree very well with those of Gillis and
Brandt [20] for the entire flow region and also with those of Van Dyke [21] in the
very inlet region. Figure 4 shows the flow development for Re = 1000. The 100 x 10
grid, which extends the computational domain up to 10H in the x-direction, was
used taking 6=04. The convergence criterion is the same as the case with
Re = 150; 175 time steps, which requires 50 seconds CPU time, are needed for the
steady state, yielding an rms of V-u of 5.6 x 107° and an error in the flow rates
between the inletdmwhekiean0.002%. As we can see in Fig. 4 a downstream distance
of 10H is not sufficient for a fully developed flow, and there still exists a potential
core with a maximum velocity u = 1.303.

3.2. Flow in a Rotating Passage

Flow in a rotating passage is considered for the geometry shown in the inset of
Fig. 5, in which a curved passage without blades is under rotation about the X-axis
with an angular velocity o'. Let us define a reduced pressure, p”, as

p/lzp/_g_(mrxrr).(wlxrr)

r-1  STATIONARY

4
r ¥ ROTATIONAL

i
X —x4—T %

7
77
.608.L

1075L

__}4—.048L
1378L

H x-y plane

FiG. 5. Orthogonal curvilinear coordinate system.
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where 1’ is the displacement from the X-axis, p’ the static pressure, and p the den-
sity. If we non-dimensionalize r', W, ¢, and p” with, respectively, the reference length
L (distance from the X-axis to the tip of the rotating part of the wheel in this
study), the uniform inlet velocity U, L/U, and pU? we have the Navier—Stokes
equations in the rotating frame as (2.1) and (2.2) with the Coriolis force term,
2eixu, in the left-hand side of the momentum equation. Here Re is the Reynolds
number again defined as UL/v, e=lw'| L/U, u the relative velocity about the
X-axis, and i the unit vector in the X-direction.

The cross-sectional flow area cut by a plane comprising the X-axis, which is
called the x—y plane, is transformed into a computational domain (&, n) using the
numerical orthogonal mapping [24], which is shown in Fig. 5. The artificially com-
pressible Mavier—Stokes equations in a weak conservative form are written for the
orthogonal coordinate system as

au, b a<\/§ > um< oh ahm>+c,

—u
Yox,, " ox,

0 oh 0 oh ]
- e Sl ) )

ax,\K3h,, 0x,, h2hZ ox, ") |

' Ok Ou,, 1 0h,, du,, (6h
hzh 0x,, 0x; hhZ 0x; 0x, hih%\0x,,

(1 O Ohy 2 Oy OBy 1 Ok Oh
hh} 0x,, 0x,  hih, 0x,0x, hih2 0x,, Ox,

u, oh, oh,,
k2 h, 0x, Ox,
op 1 0 (\/g

ot [ Y2
0f \/éo’xm

um> =( (subscripts I, m, # vary from 1 t0 3, no sum on 1)

m

(3.2)

Here (x,, x,, x3) and (u,, u,, u;) correspond to (&, 4, ¢) and (u, v, w), respectively,
where ¢ is the circumferential angle, and w is the relative velocity in that direction,

= [(0x/BE)? + (8y/08)* T2, hy = [(3x/0n)* +(3y/an Y12, ha=y, \/g =hihyhy, V7
is the Laplacian operator, and C, is the /th component of the Coriolis force {ie,
2ei X m).

We take ¢, J, and Re to be 1, 0.3, and 1000, respectively. For the flow indepen-
dent of ¢ (ic., 0/6¢ =0) there is no pressure term in the w-momentum equation
described in (3.2). Therefore, two different Courant numbers are used for the
calculations of the u-, v-, p-equations, and w-equation (which is decoupled from the
modified continuity equation) setting A& =An=1 by

S81/70/1-16
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| lvl> (|u| |U|> 2<1 1)]1/2}
= At i I
Cr {2<h1+h2 Ha\x ) Ts\ete)| P

qu [v]
Crw —At( h2>

A uniform velocity (i.e., u=1) is given at the inlet, and the pressure at the exit is
given in the same manner as in (3.1). A 28 x 14 grid is used with Cr=10 and
Crw = 5. At time step 330, max(V-u) becomes 1.0 x 10~* with negligible error in
the flow rates between the inlet and exit. Comparison of the results between the
absolute frame calculation and the relative frame shows an insignificant difference
in the flow variables.

Figure 6 shows the development of the main and circumferential flows along the
curved passage. It is noted that in the near entrance region the u-profile has the
form of a potential vortex in such a way that u increases as # varics from the con-
cave to convex surfaces.

(3.3)

3.3. Driven Cavity Flow

As a last example, fluid flow in a driven square cavity is considered for Re =400
to 10000. The Re is based on the constant velocity with which the upper wall, y =1,
is moving in the x-direction. Unlike a through-flow case, it is not easy to pick up a

STATIONARY STATIONARY

ROTATIONAL ROTATIONAL

F16.6. Left: Main flow velocity distributions along the channel. Right: Absolute circumferential
velocity distribution.
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representative speed, g, for the estimation of § using (2.16). For a flow with no
preferred flow direction, like a recirculating flow, ¢ depends highly on the Re and
grid used.

Figure 7a demonstrates the convergence rates against various ¢ for Cr=20 at
Re =400 using a 20 x 20 uniform grid. It can be observed that an optimum value of
é is about 3, which corresponds to ¢=0.33. A severe deviation from it results in
slow convergence, and eventually the solution diverges for large &, 20 in this
illustration. In Figure 7b the convergence histories are plotted against Cr for
Re = 1000 with the 40 x 40 uniform grid for a fixed & of 1.3. For very large Cr, 100,
for example, the present scheme yields very slow convergence or may not even con-
verge to a satisfactory level. This indicates that the A2 A A, term in (2.8), which
makes our system (2.8) inconsistent with the Navier-Stokes equations (2.4), has an
adverse effect on our scheme for large Cr. Taking the Cr as about 20 is a good
choice in this case.
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F1G. 8. The convergence rate of the max (V - u) and maximum residuals of momentum equations. @,
max(V-u); O, x, the maximum residuals of the - and v-momentum equations, respectively.
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The max(V -u), maximum residuals of the u- and v-momentum equations are
shown in Fig. 8 for Re=1000 and 10,000. Each guantity for Re=1000 drops
rapidly. with almost the same rate. For Re = 10,000 the convergence is slow and
oscillatory as well. It is noted that the maximum residual of the v-momentum
equation is much larger than the other quantities.

The u-velocity profiles with y at the geometric center of the cavity (ie., x=0.5)
are presented in Fig. 9. The results for Re =400 and 1000, which are obtained using
the 40 x 40 uniform grid, are shown in Fig. 9a and b. The agreement with Ghia es
al. [257 is excellent, especially for Re =400, but it is noticeable in Fig. 9b that for a
higher Re, say 1000, the present result deviates from theirs {see the maximum value
of u near y=90). This is probably due to the fact that at high Re viscous effects are
concentrated very close to the walls; therefore, finer grid resolution is needed as Re
increases. Although a dense uniform grid could be applied to the entire flow
domain, it would increase computation time. An alternative way is to arrange a
finer grid near the walls while keeping the total number of grid points unchanged
by stretching the coordinates using the transformation functions as

_ Tan'[y(2&/H—1)]+Tan"'y _ Tan '[y(2y/JJ—1)]+Tan"'y

2Tan 'y ’ 2Tan 'y

(3.4)

where I7 and JJ are the numbers of grid points in the x and y directions, and v is a
factor to control the grid. The Navier-Stokes equations in the (£, #) coordinate
system are written in a conservative form in such a way that all of the metric com-
ponents are kept inside the derivatives.

F16. 9. The u-velocity profiles with y at the center of the cawity (€., at x =0.5) using a 40 x 40 grid.
{a) Re =400, uniform grid. (b) Re = 1000, uniform grid. (¢) Re = 1000, non-uniform grid. {d} Re = 3200,
non-uniform grid. (e) Re=5000, non-uniform grid. (f) Re= 10000, non-uniform grid; O, results
obtained by a 129 x 129 grid [257.
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TABLE 1
Run Conditions and Results for the Driven-Cavity Flow Using a 40 x 40 Grid

Time CPU time
Re Cr o y steps max(V-u) rms(V-u) (insec) Vmax Upax
a 400 20 10 — 350 10x10~* 7.06x10-¢ 156 0.288 —0312
b 1000 20 3 — 300 1.0x107* 259x10-° 137 0.181 —0.348
¢ 1000 20 3 15 320 10x107* 149x10-* 162 0.185 —-0372
d 3200 10 2 25 600 62x10* 145x10~* 305 0.095 —0.407
e 5000 10 3 30 800 72x107* 1.78x10~* 396 0.081 —0415
f 5 40 1500 50x107* 1.10x10* 729 0.075  —0409

10000 10

In Fig. 9¢ the w-velocity obtained for Re=1000 using (3.4) shows excellent
agreement with [25]. The wu-velocity profiles obtained from using the 40 x40
stretched grids are presented for Re = 1000~ 10,000 in Fig 9¢{ A kink in the
velocity profile is observed near the upper wall (ie., y=1) for very high Re (e.g.,
5000 and 10,000). This would probably be unstable in the presence of small distur-
bances.

Each calculation has been done starting with an initial velocity field (ie., u at
t=0) which is zero everywhere. Run conditions, convergence, CPU time, and
others are listed in Tablel, in which u,,, and y,,, denote respectively the
maximum velocity of # and the corresponding y value near the bottom wall. Due to
grid clustering near the wall, the representative velocity, ¢, is different from the
value which is optimum for a uniform grid and the § values appearing in Table I
may not be optimum.

4, CONCLUSION AND RECOMMENDATIONS

The present time marching finite-difference method using artificial compressibility
has been applied to incompressible fluid flow through a channel and in a highly
recirculating region. With a staggered grid and velocity-pressure couplings, the
present central-difference scheme is stable and accurate in calculations of fluid flow
through channels and in cavity for a wide range of Reynolds numbers without
adding artificial damping terms. The present method is also stable for large cell
Reynods numbers. For example, the cell Reynolds number appearing in the
calculation of the driven cavity flow at Re = 10000 is as high as about 100. No
spatial oscillations in the flow variables are observed for high Re flow calculations.

It is recommended that a value for the artificial compressibility, §, be chosen as
in (2.16) by proper selection of ¢ through the understanding of the flow of current
interest together with a consideration of grid arrangement. For optimum values of &
and time step, however, further investigation including the viscous effects is needed.
As for the Courant number, selecting too large a value should be avoided, since the
A¢? term in (2.8) affects our scheme.
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APPENDIX

The (Ru);, (Rv);, and (Rp); in (2.9) and (2.10) are written in the finite-difference
form for each cell as

(Ru)ij__l__ <Mi+1j+ ui—lj_zuij+ Uy tuy 2“;’1) _Pivy TPy

At Re sz AyZ Ax
;)= (u;)* v} UUN=—v; UUS
Ax Ay
Eho Ui+1j+ui“j—zvif+”if+‘+”U-1_2”U>~Pff+1—pij
4t Re Ax? Ayz Ay
uf VVE—u, -VV'W (U;L)Z_(U;)z
Ax Ay
0 Ups—U; _; Vy— Uy
— (Rp)., = —2 i—y_ Yy Y-t
= (BP)

Ax 4y

where UUN=(u;+u,,,)/2, UUS=(uz+u; )2, VVE={(v;+v,,)/2, and
VVW = (v, +v;_,;)/2. At the cell whose boundary lies on the wall,

%2_______4(14,-223); i) for j=1, ————-———4(11”*1)32_ i) for j=J.
For the y-sweep, (2.10) can be rewritten as
AdvE (+BAvy+ CAvE, 1 (dpf. — ApF)=(Rv), {A-1)
Doy — sz )+ Ap¥ = (Rp), (A-2)

0

where A= —(¢,/2)v, —1t,, B=14(t,/2)(v} —v, )+2¢,, and C=(¢,/2)v} —¢).
Subtracting (A-2) for j=j+ 1 from (A-2) for j=j gives

t
AP?;H-AP;‘ =(Rp)yi1— (Rp)ij‘“gy (AU;;H'FAU;* 1 —2 A”f;)-

Then, {(A-1) becomes

2 12 / 1
(A—%) Aok, +<B+%5~y) Au,_?,'FJrKC——g) ok,
= (Rv)ij__ty((Rp)ij—Fl——(Rp)ij)' (A-17)

Equation (A-1) can be solved for j=1,., J— 1 (dvF =0 since v is given at the wali,
ie., j=J) using a tridiagonal matrix solver, then the 4p¥ in (A-2) is obtained sub-
sequently.
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For the x-sweep, (2.12) is rewritten as

DA+ L+ E Autt 4+ F Auls b 1 (Ap7s b — Api+ Yy = du (A-3)
Le o ] ;
Z(dut ! — Ay )+ dpy = Api (A-4)

where D, E, and F are the first entries of the first, second, and third square matrices
in (2.12). Ati=1, Ap}}\;— Ap}* ' in (A-3) becomes —Ap}* ! because the p, which is
Pi. y there, is given at the right-side boundary of the u-cell. Strictly speaking, p is
not given fixed but varies with time about a fixed value, which is zero in the present
study. The value of p,, ,; is evaluated at the nth time step using (3.1). As solution
approaches steady-state p,, ,, becomes independent of time. For i=1, all of the
convective terms are extrapolated to be w; =u;+ (uy—u, )2, v =VVE=
v+ (wy—v, )2, and v, =v; +(vy_,—v,_y;_)/2. The diffusion terms are
approximated as

2 2
Ou  wy_gt+uy—2u;_y 00 v y+v,;—20,_y
ox? Ax? T ox? Ax?

As was the case with (A-1'), the above equation (A-3) can be written as

12 212 2
(D - —5’5) Auf* )+ <E+ —5—’“) Auf v+ <F~ g) Auf bl = Auf — 1t (ApF, ;— Ap}).

(A-3')

To observe the structure of the system (A-1') and (A-3'), it is assumed that
v =v; =v, u =u; =u, and that they are positive. If the cell Reynolds numbers,
Re v Ay and Re u 4x, are less than 2, (A-1') and (A-3’) are diagonal dominant. For
Re v 4y and Re u 4x much greater than 2 we can write (A-1') and (A-3') as

by 5 g 1420 s (25 gox  —RHSof (A1) (A5)
5y Avi_ + +—5— v+ 3073 v = of (A-1")  (A-

tx ti n+1 2li n+1 tx [)2( r+1 f +
Uy duf L+ 1+——5— Auf ™t + FU—S Au}} = RHS of (A-3).
(A-6)
For (¢,/2) v<£3/6 and (2,/2) u < t3/5, (A-5) and (A-6) are diagonal dominant. In the

case where (7,/2) v and (z,/2) u are larger than ¢,/ and £ /5, respectively, we have
the following for the diagonal dominance:

u?, 02 <=

0
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Recalling that 6 is chosen according to (2.16) we can conclude that the system
(A-1") and (A-3') are always diagonal dominant in the practical calculation.
However, the system (2.9) and (2.11) have some limitations on the time step to
guarantee the diagonal dominance for the cell Reynolds numbers larger than 2 as

l,‘/’1< 1 u/1l< i
Ay 1 =2(Revdy) " Ax 1 =2(Reudx)!

The above arguments about the diagonal dominance arc confined only to the par-
vial stom ik e o . L

A > 2y . ~ o

e g O on

e %

correctien step (A-37) and (2.11). This may allow a large ceil Keynolds number
without deteriorating the present central difference numerical scheme. To confirm
this in an affirmative way a rigorous stability analysis of the velocity -pressure
coupled system is necded. which i1s not carried out 1n this paper.
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